Saturday, August 17, 2013

IB MATHEMATICS Topic : Sequences and Series – Patterns in Powers of Numbers

Consider all the powers from 1 to 10 of the numbers one to 10.
1
1
1
1
1
1
1
1
1
1
1
2
2
4
8
16
32
64
128
256
512
1024
3
3
9
27
81
243
729
2187
6561
19683
59049
4
4
16
64
256
1024
4096
16384
65536
262144
0148576
5
5
25
125
625
3125
15625
78125
390625
1953125
9765625
6
6
36
216
1296
7776
46656
279936
16796160
10077696
60466176
7
7
49
343
2401
16807
117649
823543
5764801
40353607
282475249
8
8
64
512
4096
32768
262144
2097152
16777216
134217728
1073741824
9
9
81
729
6561
59049
531441
4782969
43046721
387420489
3486784401
10
10
100
1000
10000
100000
1000000
10000000
100000000
1000000000
10000000000
We are only interested on the last digit of each entry in the table above. These are shown in the table below.

1
1
1
1
1
1
1
1
1
1
1
2
2
4
8
6
2
4
8
6
2
4
3
3
9
7
1
3
9
7
1
3
9
4
4
6
4
6
4
6
4
6
4
6
5
5
5
5
5
5
5
5
5
25
25
6
6
6
6
6
6
6
6
6
6
6
7
7
9
3
1
7
9
3
1
7
9
8
8
4
2
6
8
4
2
6
8
4
9
9
1
9
1
9
1
9
1
9
1
10
10
100
1000
10000
100000
1000000
10000000
100000000
1000000000
10000000000
Notice that the last digits ofandare constant – they are 1 and 6 respectively for alland that 6-1=5.
Notice that the last digits ofandmake cycles of length 4: they are 2,4,8,6 and 7,9,3,1 respectively, and that 7-2 =5.
Notice that the last digits ofandmake cycles of length 4: they are 3,9,7,1 and 8,4,2,6 respectively, and that 8-3 =5.
Notice that the last digits ofandmake cycles of length 2: they are 4,6 and 9,1 respectively, and that 9-4 =5.
These patterns exist because ifthenso the last digits are related by a difference of 5 at each stage. If one oforhas a cycle of a certain length, so must the other.

No comments:

Post a Comment